

how can i connect a hobby gearmotor to a bread board and arduino board on tinkercad

Here's a **simple, clear way** to connect a small hobby gearmotor to a breadboard and Arduino **in Tinkercad**.

(Important: You **cannot power a DC motor directly from an Arduino pin**—you must use a transistor or motor driver.)

The Easiest Safe Setup (NPN transistor + diode)

Parts you need in Tinkercad

- Arduino Uno
- Breadboard
- Hobby DC gearmotor
- NPN transistor (2N2222 or TIP120)
- Diode (1N4007)
- $1k\Omega$ resistor
- External power supply (9V battery OR Arduino 5V for small motors)
- Jumper wires

Wiring Diagram (Text Version)

1. Motor + Diode

- Connect **one motor terminal** → **5V**
- Connect **the other motor terminal** → **transistor collector (C)**
- Place diode **across motor terminals**:
 - **Diode stripe** → **5V**
 - **Other side** → **transistor collector**
(This protects the Arduino from voltage spikes)

2. Transistor

- **Collector (C)** → **motor**
- **Emitter (E)** → **GND**

3. Arduino Control

- Pick a PWM pin (like **D9**)

- D9 → 1kΩ resistor → transistor base (B)

4. Shared Ground

- Arduino GND → breadboard GND

Why It Works

- The transistor acts like a switch that lets the Arduino turn the motor on/off.
- The diode catches voltage spikes when the motor stops.
- The resistor prevents too much current from flowing from the Arduino pin.

Tinkercad Circuit Summary

Arduino D9 → 1k resistor → Transistor Base

Arduino GND → Transistor Emitter

5V → Motor (+)

Motor (-) → Transistor Collector

Diode across motor (stripe to +)

Want a diagram?

I can generate a labelled wiring diagram matching Tinkercad's layout if you want—just tell me:

Do you want a simple graphic diagram (top-down) or step-by-step visual instructions?

can you write a simple code that turns the motor when the program starts

Here's a **very simple Arduino code** that turns the motor on as soon as the program starts. (Works with the transistor setup you're using.)

Simple Motor-On Code

```
int motorPin = 9;    // the pin connected to the transistor base
// (through the resistor)

void setup() {
  pinMode(motorPin, OUTPUT);
  digitalWrite(motorPin, HIGH); // turn motor ON immediately
}

void loop() {
  // nothing needed here
}
```

⚡ Optional: Motor speed control (PWM)

If you want to control speed:

```
int motorPin = 9;

void setup() {
  pinMode(motorPin, OUTPUT);
  analogWrite(motorPin, 200); // 0-255 (200 ≈ ~80% speed)
}

void loop() {
```

If you want the motor to turn on, wait, then turn off, or run in pulses, I can write that too!

how can i have 8 motors that work like this instead of 1?

To run **8 motors** the same way (each controlled by an Arduino pin through its own transistor + diode), you just repeat the same circuit **8 times** and use **8 output pins**.

Below is the **simplest working code**.

✓ Code for 8 Motors (All turn on when program starts)

```
// Pins for each motor (each goes to a 1k resistor → transistor base)
int motors[8] = {2, 3, 4, 5, 6, 9, 10, 11};
// (Use any 8 digital pins)

void setup() {
    // Set all motor pins as outputs
    for (int i = 0; i < 8; i++) {
        pinMode(motors[i], OUTPUT);
        digitalWrite(motors[i], HIGH);    // turn all motors ON
    }
}

void loop() {
    // nothing needed
}
```

Hardware Reminder

Each motor needs *its own*:

- NPN transistor (2N2222, TIP120, etc.)
- 1k resistor from Arduino pin → transistor base
- Diode across motor terminals
- Shared ground with Arduino

You cannot run 8 motors directly off Arduino 5V

The motors must use an **external power supply** (like 4×AA battery pack or 6V–9V supply), with **grounds connected together**.

Want variations?

I can also give you code for:

- motors turning on one at a time
- motors turning on with delays
- random motor activation
- speed control (PWM)
- controlling 8 motors using arrays more efficiently

Just tell me what behavior you want!

can you explain the setup needed for this

Here is a **clear, simple explanation** of the setup you need to run **8 DC hobby motors** using an Arduino. This works in **Tinkercad** and in real life.

1. What you need for each motor

Each motor must have its own driver circuit:

- 1 × DC hobby motor
- 1 × NPN transistor (2N2222, TIP120, etc.)
- 1 × Diode (1N4007)
- 1 × $1\text{k}\Omega$ resistor
- Wires
- External power source (for all motors together)

So for **8 motors**, you need **8 transistors + 8 diodes + 8 resistors**.

2. Wiring for each motor (repeat 8 times)

Motor

- Motor terminal A → **+ motor power** (battery + or external 5–9V)
- Motor terminal B → **transistor collector**

Diode

Connect the diode **across the motor terminals**:

- Stripe side (cathode) → **motor +**
- Non-stripe side (anode) → **motor – (collector)**

This prevents voltage spikes.

Transistor

Use the 3 pins: **Base (B)**, **Collector (C)**, **Emitter (E)**

- **Collector** → motor terminal B
- **Emitter** → Ground (GND)

Resistor + Arduino pin

- Arduino digital pin → **1kΩ resistor** → **transistor base (B)**
This lets the Arduino control the motor.

Shared Ground

- Arduino GND → motor power GND
- All transistor **emitters** → GND

This is VERY important:

The Arduino and the motor power supply must share ground or nothing will work.

3. External power supply

With 8 motors, **do not** power them from the Arduino 5V pin.

Use:

- **4×AA battery pack (6V)**, or
- **5V–9V external supply**, depending on your motors

All motor + terminals connect to this supply's positive line.

Full System Summary

Here's everything in one block:

```
[Motor +] → External battery +  
[Motor -] → Transistor Collector  
[Transistor Emitter] → GND (shared with Arduino)
```

[Arduino pin] → 1k resistor → Transistor Base
[Diode] across motor terminals (stripe to +)

Repeat this **8 times**, using **8 different Arduino pins**.

★ Extra tips for 8 motors

- Digital pins 2–13 are safe to use.
- If you want speed control, choose PWM pins: 3, 5, 6, 9, 10, 11.
- Keep ground wires neat—everything must share the same ground.
- If you want a more compact solution, you can use the **ULN2803A** (8-channel transistor array), which replaces **all 8 transistors + resistors + diodes**.

(If you're interested in the ULN2803A version, tell me—it's MUCH easier.)

If you want, I can make:

A diagram for the 8-motor circuit
or
 A Tinkercad-ready wiring map

Just tell me!

can you adjust the code for two motors

Sure! Here's the simplest version of the code for **two motors**, each controlled by its own Arduino pin.

✓ Two-Motor Arduino Code

(Each motor turns on immediately when the program starts.)

```
int motor1 = 9;    // first motor control pin
int motor2 = 10;   // second motor control pin

void setup() {
  pinMode(motor1, OUTPUT);
  pinMode(motor2, OUTPUT);
```

```
  digitalWrite(motor1, HIGH); // turn motor 1 on
  digitalWrite(motor2, HIGH); // turn motor 2 on
}

void loop() {
  // nothing needed here
}
```

⚡ Want speed (PWM)?

If your two motors are on PWM pins:

```
int motor1 = 9;
int motor2 = 10;

void setup() {
  pinMode(motor1, OUTPUT);
  pinMode(motor2, OUTPUT);

  analogWrite(motor1, 200); // speed: 0-255
  analogWrite(motor2, 200);
}

void loop() {}
```

If you want them to turn on one after the other, alternate, run at different speeds, or respond to buttons, I can write that too!

how can i add a h-bridge motor driver to have 8 total motors instead of 3
Thought for 9s

Nice — you want *bidirectional* control (H-bridge) and to scale up to **8 motors**. Below I'll give you practical hardware options, wiring & power rules, and two example code paths you can pick from depending on the parts you choose (simple discrete H-bridges vs. ready-made motor shield that's far easier).

I'll assume you want something that works in real life *and* can be emulated in Tinkercad where possible.

Hardware options (pick one)

1. **Best / easiest — Motor shield(s) that handle multiple motors (recommended)**
 - Example: **Adafruit Motor Shield v2** (uses TB6612 internally + PCA9685 PWM).
 - One shield → **4 DC motors**.
 - Stack a **second shield** (change I²C address) → **8 motors** total.
 - Pros: small pin usage (I²C + few), easy library, supports PWM speed + direction, safe wiring.
 - Cons: cost, needs shield (Tinkercad may not have it).
2. **Compact driver chips / modules**
 - **TB6612FNG** (dual H-bridge) — each chip drives 2 motors; need 4 chips for 8 motors.
 - **L293D / L298N** (older) — each L293D drives 2 motors; similar approach.
 - Pros: cheap, well-known.
 - Cons: uses many Arduino pins (2 direction + 1 PWM per motor typically → 3 pins/motor), heat/efficiency issues on some chips.
3. **Advanced: I²C / SPI driver boards**
 - **PCA9685** PWM expander + small H-bridge transistors or MOSFET H-bridges per motor: PCA9685 supplies PWM channels (16 per board), you still need direction logic. Good if you want many PWM channels without using Arduino pins.
 - Pros: scales easily, fewer Arduino pins used.
 - Cons: slightly more wiring/logic.

Important power & wiring rules (apply no matter what)

- **Do not** power motors from the Arduino 5V regulator. Use a separate motor power supply sized for the total stall current of all motors.
- **Common ground:** connect motor power negative to Arduino GND.
- **Current budget:** estimate stall current × number of motors (or worst-case simultaneous motors) and pick a supply with a comfortable margin.
- **Decoupling:** add electrolytic caps near drivers (e.g., 470µF+) and small ceramic caps across motor terminals.
- **Protection:** use diodes (if driver doesn't include them), fuses, or current-limiting if needed.
- **Heat:** some chips need heatsinks (e.g., L298N).

Wiring patterns (general)

- For **each motor** with a typical H-bridge (L293 / TB6612 style):

- `IN1` and `IN2` — direction pins (digital outputs)
- `EN` (or `PWMA`) — PWM pin (speed)
- Motor `+/−` → H-bridge motor outputs
- H-bridge `Vcc` (motor supply) → external motor supply `+`
- H-bridge `Vlogic` → Arduino 5V (check chip spec)
- GNDs common

Arduino pin usage

- If you use 2 direction + 1 PWM per motor, 8 motors → **24 Arduino pins** (unrealistic on Uno). That's why shields/I²C expanders are recommended.
- Motor shield or PCA9685 + direction expander reduces pin usage drastically.

Two practical routes with example code

A — Recommended: Two Adafruit Motor Shield v2 (4 motors per shield → 8 motors)

- Wiring: stack shields (set second shield to different I²C address with jumpers). Motor power connected to VIN screw terminal(s). Arduino communicates over I²C.
- Library: `Adafruit_MotorShield` + `Adafruit_MS_PWMServoDriver`.
- Example: turn all 8 motors ON at startup (simple forward at half speed).

```
#include <Wire.h>
#include <Adafruit_MotorShield.h>

// create two shields at different I2C addresses (0x60 and 0x61)
Adafruit_MotorShield AFMS1 = Adafruit_MotorShield(0x60);
Adafruit_MotorShield AFMS2 = Adafruit_MotorShield(0x61);

// get motors (each shield has motors 1..4)
Adafruit_DCMotor *m1 = AFMS1.getMotor(1);
Adafruit_DCMotor *m2 = AFMS1.getMotor(2);
Adafruit_DCMotor *m3 = AFMS1.getMotor(3);
Adafruit_DCMotor *m4 = AFMS1.getMotor(4);

Adafruit_DCMotor *m5 = AFMS2.getMotor(1);
Adafruit_DCMotor *m6 = AFMS2.getMotor(2);
Adafruit_DCMotor *m7 = AFMS2.getMotor(3);
```

```

Adafruit_DCMotor *m8 = AFMS2.getMotor(4);

void setup() {
  AFMS1.begin(); // start first shield (default freq)
  AFMS2.begin(); // start second shield
  // set speed (0-255) and run forward
  Adafruit_DCMotor* motors[8] = {m1,m2,m3,m4,m5,m6,m7,m8};
  for (int i=0;i<8;i++){
    motors[i]->setSpeed(150);
    motors[i]->run(FORWARD);
  }
}

void loop() {
  // All motors run continuously
}

```

Notes:

- You must set the second shield to address `0x61` (or whichever the shield docs show).
- This is the simplest, cleanest way to manage 8 motors with minimal pin wiring.

B — If you use TB6612 (4 chips for 8 motors) or L293D pairs

- Wiring per motor: IN1, IN2 → Arduino pins; STBY/EN → PWM pin (or tied HIGH if not using speed).
- Because of pin count, you'll likely run out of pins on an Uno — consider using an **Arduino Mega** or add I/O expanders (MCP23017) or PCA9685 for PWM + separate direction pins via shift registers.

Example *conceptual* code for TB6612-style control (assumes you have enough pins):

```

// Example arrays: each motor has dirA, dirB, pwm
const int dirA[8] = {2,5,8,11,14,17,20,23};    // example pins (need
Mega to have this many)
const int dirB[8] = {3,6,9,12,15,18,21,24};
const int pwmPin[8] = {4,7,10,13,16,19,22,25};

void setup() {
  for (int i=0;i<8;i++){

```

```

pinMode(dirA[i], OUTPUT);
pinMode(dirB[i], OUTPUT);
pinMode(pwmPin[i], OUTPUT);
digitalWrite(dirA[i], LOW);
digitalWrite(dirB[i], LOW);
analogWrite(pwmPin[i], 0);
}
// ... set motor power supply and grounds
}

void runMotorForward(int m, int speed){ // m: 0..7, speed 0..255
digitalWrite(dirA[m], HIGH);
digitalWrite(dirB[m], LOW);
analogWrite(pwmPin[m], speed);
}

void loop() {
for (int m=0;m<8;m++) runMotorForward(m, 200);
while(1);
}

```

Important: That code expects a board with lots of pins (Mega) or I/O expanders. If you must use an Uno, use the Motor Shield approach or PCA9685.

Tinkercad notes

- Tinkercad's component library is limited — it may not include specific motor shields. You can simulate the concept with transistors (NPN + protection diode) or an L293D chip (available in Tinkercad), but you won't get stackable shield behavior. Use discrete L293D modules in Tinkercad to prototype logic but remember real wiring/power rules still apply.

Quick checklist before powering up

1. Motors connected to driver outputs, driver motor Vcc connected to external motor supply.
2. Arduino 5V to driver logic Vcc (if driver expects it).

3. All grounds tied together (Arduino GND ↔ motor supply negative ↔ driver GND).
4. Start with low speed when testing.
5. Have decoupling capacitors and small test current-limited supply or fuses if possible.

If you tell me which exact parts you have (e.g., “I have two Adafruit Motor Shield v2” or “I have TB6612 chips” or “I only have L293D”), I’ll:

- give you the precise wiring diagram for Tinkercad/real life, and
- produce working Arduino code tailored to your hardware (including a toggle button example if you still want latching behavior).

how can i do this on tinkercad

Tinkercad **does NOT have big motor shields or TB6612 drivers**, but it **does** include the **L293D H-bridge chip**, which lets you control **2 DC motors per chip**.

So the only practical way to get **8 motors** working in Tinkercad is:

Use 4× L293D chips → 8 motors

Each L293D chip controls **2 motors**, so:

- 1 chip → 2 motors
- 2 chips → 4 motors
- 3 chips → 6 motors
- **4 chips → 8 motors** ← what you need

And yes—this works in Tinkercad.

What you need in Tinkercad

- Arduino Uno
- Breadboard
- 4 × L293D chips
- 8 × DC motors
- Motor power supply (you can use Arduino 5V in simulation)
- Wires

💡 How to wire ONE L293D chip (repeat this 4 times)

The L293D pinout:

1	- EN1 (enable motor 1)	→ Arduino PWM pin
2	- IN1	→ Arduino direction pin
3	- OUT1	→ Motor 1 terminal A
4	- GND	
5	- GND	
6	- OUT2	→ Motor 1 terminal B
7	- IN2	→ Arduino direction pin
8	- Vmot (motor power)	
9	- EN2 (enable motor 2)	→ Arduino PWM pin
10	- IN3	→ Arduino direction pin
11	- OUT3	→ Motor 2 terminal A
12	- GND	
13	- GND	
14	- OUT4	→ Motor 2 terminal B
15	- IN4	→ Arduino direction pin
16	- Vcc (logic 5V)	

⚡ Power connections

- Pin **8** → Motor power (Tinkercad: 5V is okay)
- Pin **16** → Arduino 5V
- ALL **GND** pins → Arduino GND (must share!)

⚙️ Motor wiring

- OUT1 & OUT2 → Motor 1
- OUT3 & OUT4 → Motor 2

🔁 Repeat this wiring 4 times

Place 4 L293D chips on the breadboard inside Tinkercad and wire them the SAME way.

You will occupy more Arduino pins, so choose something like:

Motor 1

- EN1 = 3
- IN1 = 2
- IN2 = 4

Motor 2

- EN2 = 5
- IN3 = 6
- IN4 = 7

Motor 3

- EN1 = 9
- IN1 = 8
- IN2 = 10

Motor 4

- EN2 = 11
- IN3 = 12
- IN4 = 13

...and so on for motors 5–8.

Example Tinkercad-friendly code for 8 motors

This example simply turns all 8 motors ON forward at full speed:

```
// Motor 1
int EN1_1 = 3;
int IN1_1 = 2;
int IN2_1 = 4;

// Motor 2
int EN1_2 = 5;
int IN1_2 = 6;
int IN2_2 = 7;

// Motor 3
```

```
int EN2_1 = 9;
int IN3_1 = 8;
int IN4_1 = 10;

// Motor 4
int EN2_2 = 11;
int IN3_2 = 12;
int IN4_2 = 13;

// Add more pins for motors 5-8...

void setup() {
    pinMode(EN1_1, OUTPUT);
    pinMode(IN1_1, OUTPUT);
    pinMode(IN2_1, OUTPUT);

    pinMode(EN1_2, OUTPUT);
    pinMode(IN1_2, OUTPUT);
    pinMode(IN2_2, OUTPUT);

    pinMode(EN2_1, OUTPUT);
    pinMode(IN3_1, OUTPUT);
    pinMode(IN4_1, OUTPUT);

    pinMode(EN2_2, OUTPUT);
    pinMode(IN3_2, OUTPUT);
    pinMode(IN4_2, OUTPUT);

    // Motor 1 forward
    digitalWrite(IN1_1, HIGH);
    digitalWrite(IN2_1, LOW);
    analogWrite(EN1_1, 255);

    // Motor 2 forward
    digitalWrite(IN1_2, HIGH);
    digitalWrite(IN2_2, LOW);
    analogWrite(EN1_2, 255);

    // Motor 3 forward
    digitalWrite(IN3_1, HIGH);
    digitalWrite(IN4_1, LOW);
```

```
analogWrite(EN2_1, 255);

// Motor 4 forward
digitalWrite(IN3_2, HIGH);
digitalWrite(IN4_2, LOW);
analogWrite(EN2_2, 255);

// Repeat for motors 5-8...
}

void loop() {
```

Want step-by-step visual instructions?

I can generate a [Tinkercad wiring diagram](#) that shows:

- where to place each L293D
- which Arduino pins connect where
- how to route motor wires
- how to copy the pattern for 8 motors

Just tell me:

👉 **Do you want a top-down wiring image or step-by-step build instructions?**

what is the direction pin

The **direction pin** on an H-bridge motor driver is the pin that tells the motor **which way to spin**.

🚗 What the Direction Pin Does

For each motor on a typical driver (like the L298N or TB6612FNG), there are **two digital inputs**:

- **IN1** and **IN2** (or **AIN1 / AIN2**)
- These determine the direction by which one is HIGH and which is LOW.

Think of them like switches that choose which way current flows through the motor.

Example (TB6612FNG or L298N)

IN1	IN2	Motor Direction
-----	-----	-----------------

HIGH	LOW	Forward
------	-----	---------

LOW	HIGH	Reverse
-----	------	---------

LOW	LOW	Stop (coast)
-----	-----	--------------

HIGH	HIGH	Brake
------	------	-------

! There isn't usually a single "direction" pin — instead, direction is created by **two pins**.

Some drivers combine these into:

- **DIR** → direction
- **PWM** → speed

But on Tinkercad, the built-in motor driver is the L293D or L298-style, which uses **two direction pins per motor**.

In Tinkercad

When you add the motor driver (L293D):

Each motor uses:

- **Pin 1 & Pin 2 → Motor A direction pins**
- **Pin 3 → Motor A output to the motor**
- **Pin 9 → Enable A (PWM)**
- **Pin 4 & Pin 5 → Motor B direction pins**
- **Pin 6 → Motor B output to the motor**

Example Arduino wiring in Tinkercad

For Motor A:

- Arduino D5 → Enable A (speed, PWM pin)
- Arduino D2 → IN1
- Arduino D3 → IN2

For Motor B:

- Arduino D6 → Enable B (speed)
- Arduino D4 → IN3
- Arduino D7 → IN4

Why It's Called a Direction Pin

When people say “direction pin,” they usually mean **one of the two pins that control direction**, not a single function pin.

You set these pins HIGH or LOW to change direction.

Example Arduino code for direction:

```
digitalWrite(IN1, HIGH);  
digitalWrite(IN2, LOW); // forward  
  
digitalWrite(IN1, LOW);  
digitalWrite(IN2, HIGH); // reverse
```

If you want, I can:

- Show exactly **where the pins are** on the Tinkercad driver
- Give you a **diagram** for all 8 motors with two H-bridge chips
- Provide **sample Arduino code** for controlling all 8 motors
- Help you set up the whole circuit step-by-step

Just tell me what you want next!